Covariant hamiltonian formalism for field theory: Hamilton-Jacobi equation on the space G

نویسنده

  • Carlo Rovelli
چکیده

Hamiltonian mechanics of field theory can be formulated in a generally covariant and background independent manner over a finite dimensional extended configuration space. The physical symplectic structure of the theory can then be defined over a space G of three-dimensional surfaces without boundary, in the extended configuration space. These surfaces provide a preferred over-coordinatization of phase space. I consider the covariant form of the Hamilton-Jacobi equation on G, and a canonical function S on G which is a preferred solution of the Hamilton-Jacobi equation. The application of this formalism to general relativity is equivalent to the ADM formalism, but fully covariant. In the quantum domain, it yields directly the Ashtekar-Wheeler-DeWitt equation. Finally, I apply this formalism to discuss the partial observables of a covariant field theory and the role of the spin networks –basic objects in quantum gravity– in the classical theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Hamilton - Jacobi equations and Brane associated Lagrangians

This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. ...

متن کامل

Reparametrization invariance and Hamilton-Jacobi formalism

Systems invariant under the reparametrization of time were treated as constrained systems within Hamilton-Jacobi formalism. After imposing the integrability conditions the time-dependent Schrödinger equation was obtained. Three examples are investigated in details. PACS numbers: 11.10.Ef. Lagrangian and Hamiltonian approach

متن کامل

Coordinate-free Solutions for Cosmological Superspace

Hamilton-Jacobi theory for general relativity provides an elegant covariant formulation of the gravitational field. A general ‘coordinate-free’ method of integrating the functional Hamilton-Jacobi equation for gravity and matter is described. This series approximation method represents a large generalization of the spatial gradient expansion that had been employed earlier. Additional solutions ...

متن کامل

Linear Almost Poisson Structures and Hamilton-jacobi Equation. Applications to Nonholonomic Mechanics

In this paper, we study the underlying geometry in the classical Hamilton-Jacobi equation. The proposed formalism is also valid for nonholonomic systems. We first introduce the essential geometric ingredients: a vector bundle, a linear almost Poisson structure and a Hamiltonian function, both on the dual bundle (a Hamiltonian system). From them, it is possible to formulate the Hamilton-Jacobi e...

متن کامل

A Geometric Hamilton-jacobi Theory for Classical Field Theories

In this paper we extend the geometric formalism of the Hamilton-Jacobi theory for hamiltonian mechanics to the case of classical field theories in the framework of multisymplectic geometry and Ehresmann connections.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008